January 22, 2013 MEASURES OF SERIAL EXTREMAL DEPENDENCE AND THEIR ESTIMATION
نویسندگان
چکیده
The goal of this paper is two-fold: 1. We review classical and recent measures of serial extremal dependence in a strictly stationary time series as well as their estimation. 2. We discuss recent concepts of heavy-tailed time series, including regular variation and max-stable processes. Serial extremal dependence is typically characterized by clusters of exceedances of high thresholds in the series. We start by discussing the notion of extremal index of a univariate sequence, i.e. the reciprocal of the expected cluster size, which has attracted major attention in the extremal value literature. Then we continue by introducing the extremogram which is an asymptotic autocorrelation function for sequences of extremal events in a time series. In this context, we discuss regular variation of a time series. This notion has been useful for describing serial extremal dependence and heavy tails in a strictly stationary sequence. We briefly discuss the tail process coined by Basrak and Segers to describe the dependence structure of regularly varying sequences in a probabilistic way. Max-stable processes with Fréchet marginals are an important class of regularly varying sequences. Recently, this class has attracted attention for modeling and statistical purposes. We apply the extremogram to max-stable processes. Finally, we discuss estimation of the extremogram both in the time and frequency domains.
منابع مشابه
Extremal Behaviour of Stationary Processes: the Calibration Technique in the Extremal Index Estimation
Classical extreme value methods were derived when the underlying process is assumed to be a sequence of independent random variables. However when observations are taken along the time and/or the space the independence is an unrealistic assumption. A parameter that arises in this situation, characterizing the degree of local dependence in the extremes of a stationary series, is the extremal ind...
متن کاملExtremal Dependence of Multivariate Distributions and Its Applications
ii I certify that I have read this dissertation and certify that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy. Stochastic dependence arises in many fields including electrical grid reliability, net-work/internet traffic analysis, environmental and agricultural impact assessment, and financial risk management. Models in the...
متن کاملffects of morphine_ dependence on the induction and modulation of epileptic seizures in rats
Kindling is a very suitable animal model for studying basis mechanisms of epilepsy. In this model , repeated exposure to weak electrical or chemical increases neuronal excitability and there fore decreases the threshold for induction of epileptic seizures. According to abundant distribution of opioid peptides and their receptors in different brain structures and also the role of these receptors...
متن کاملEstimating the multivariate extremal index function
The multivariate extremal index function relates the asymptotic distribution of the vector of pointwise maxima of a multivariate stationary sequence to that of the independent sequence from the same stationary distribution. It also measures the degree of clustering of extremes in the multivariate process. In this paper, we construct nonparametric estimators of this function and prove their asym...
متن کاملOrthant tail dependence of multivariate extreme value distributions
AMS 2000 subject classifications: 62H20 62P05 Keywords: Tail dependence Heavy tails Copula Multivariate extreme value distribution Marshall–Olkin distribution Archimedean copula Contagion risk a b s t r a c t The orthant tail dependence describes the relative deviation of upper-(or lower-) orthant tail probabilities of a random vector from similar orthant tail probabilities of a subset of its c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013